ENVIRONMENTAL PRODUCT DECLARATION
as per /ISO 14025/ and /EN 15804/

Owner of the Declaration | GLAPOR cellular glass
Programme holder | Institut Bauen und Umwelt e.V. (IBU)
Publisher | Institut Bauen und Umwelt e.V. (IBU)
Declaration number | EPD-GLP-20170195-CBA1-EN
Issue date | 11.12.2017
Valid to | 10.12.2022

GLAPOR cellular glass
GLAPOR Werk Mitterteich GmbH
General Information

GLAPOR Werk Mitterteich GmbH

Programme holder
IBU - Institut Bauen und Umwelt e.V.
Panoramastr. 1
10178 Berlin
Germany

Declaration number
EPD-GLP-20170195-CBA1-EN

This Declaration is based on the Product Category Rules:
Mineral insulating materials, 07.2014
(PCR tested and approved by the SVR)

Issue date
11.12.2017

Valid to
10.12.2022

Verification
The CEN Norm /EN 15804/ serves as the core PCR
Independent verification of the declaration according to /ISO 14025/

Prof. Dr.-Ing. Horst J. Bossenmayer
(President of Institut Bauen und Umwelt e.V.)

Dr. Burkhard Lehmann
(Managing Director IBU)

Angela Schindler
(Independent verifier appointed by SVR)

Product

Product description / Product definition
GLAPOR cellular glass boards cellular glass products are vapour-tight, lightweight insulation materials for the construction industry made of 100 % recycled glass. By combining the physical properties of glass with the insulating properties of a closed cell structure, GLAPOR cellular glass products provide high compressive strength, are lightweight, fire resistant and resistant to rodents. The permanent, continuous production process guarantees consistent high quality.

This EPD is valid for the GLAPOR cellular glass boards:

- GLAPOR cellular glass boards PG 600 (110 kg/m³)
- GLAPOR cellular glass boards PG 400 (125 kg/m³)
- GLAPOR cellular glass boards PG 900.2 (135 kg/m³)
- GLAPOR cellular glass boards PG 1000 (135 kg/m³)

The LCA-related information can be extrapolated to other products via their specific densities, notably to:

- GLAPOR cellular glass boards PG 400 (125 kg/m³)
- GLAPOR cellular glass boards PG 900.2 (135 kg/m³)
- GLAPOR cellular glass boards PG 1000 (135 kg/m³)

For the placing on the market of the product in the EU/EFTA (with the exception of Switzerland)

Application
GLAPOR cellular glass boards are an insulation material suitable for a wide range of applications. Projects have included football pitches, airports, public meeting places and biogas plants in addition to technical installations for noise insulation and fire protection - the application areas range from the foundation slab to the roof of the building. Thus, GLAPOR cellular glass can be applied in a broad variety of applications in residential, industrial and public buildings or in re-developments in accordance with /DIN 4108-10/ for structural engineering.

Such applications include in:

Residential buildings:
- insulation under the ceiling
- warm roof as metal roof without thermal bridges
- thermal insulation of terraces and balconies
- flat roof insulation for extensive and intensive green areas
• load bearing thermal insulation for under foundation slabs with base insulation and perimeter insulation formwork
• load-bearing thermal insulation for under foundation slabs with perimeter insulation formwork and perimeter insulation

Industrial buildings:
• warm roof as metal roof without thermal bridges
• flat roof insulation on trapezoidal steel with sealing
• thermal insulation under screed, e.g. for forklift traffic and racking loads
• flat roof insulation for parking decks and ceilings of courtyard cellars
• thermal insulation of the foundation slab with strip foundation
• insulation under the storey ceiling

Public buildings
• flat roof insulation for parking decks and ceilings of courtyard cellars
• flat roof insulation for extensive and intensive green areas
• insulation for under storey ceilings
• thermal insulation for under screed for walkable areas
• thermal insulation for under screed
• load-bearing thermal insulation for under foundation slabs with perimeter insulation formwork and base insulation.

Redevelopments
• warm roof as metal roof without thermal bridges
• lightweight fill on existing arches
• thermal insulation of the cellar wall
• thermal insulation for under screed
• interior insulation

More details on the application of GLAPOR cellular glass can be found under www.glapor.de

Technical Data

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal conductivity (/EN 1602/)</td>
<td>0.052 - 0.058</td>
<td>W/(mK)</td>
</tr>
<tr>
<td>Calculation value for thermal conductivity (/DIN 4108-4:2016/)</td>
<td>0.054 - 0.06</td>
<td>W/(mK)</td>
</tr>
<tr>
<td>Water vapour diffusion resistance factor (value for calculations: 40'000)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Water vapor diffusion equivalent air layer thickness</td>
<td>-</td>
<td>m</td>
</tr>
<tr>
<td>Sound absorption coefficient</td>
<td>-</td>
<td>%</td>
</tr>
<tr>
<td>Gross density (/EN 1602/ +/- 10%)</td>
<td>110 - 135</td>
<td>kg/m²</td>
</tr>
<tr>
<td>Compressive strength (/EN 826/)</td>
<td>>0.6 to >1.0</td>
<td>N/mm²</td>
</tr>
<tr>
<td>Fire resistance (/EN 13501-1/)</td>
<td>Euroclass A1</td>
<td></td>
</tr>
</tbody>
</table>

Base materials / Ancillary materials
GLAPOR cellular glass is composed of:
• 87% of recycled glass
• 12% of sodium silicate ("water glass")
• 1% of glycerine

In addition, minor quantities of kaolin are used.

The product does not contain substances listed in the Candidate List of Substances of Very High Concern for Authorisation* (accessed 4.10.2017) exceeding the limit value of 0.1% for registration by the European Chemicals Agency.

Reference service life
For an EPD cradle-to-gate, no reference service life according to the series of standards on service life planning /ISO 15686/ can be declared.

According to the table on expected service lives for the German BNB scheme /BBSR 2011/, a service life of ≥ 50 years can be assumed for all relevant applications.

LCA: Calculation rules

Declared Unit
The declaration is valid for 1 m³ of GLAPOR cellular glass with a density of 110 km/m³, with a typical thickness of 160 mm and with a thermal conductivity of 0.052 W/(mK) (Source: /Fraunhofer 2017/).

Declared unit

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Declared unit</td>
<td>1</td>
<td>m³</td>
</tr>
</tbody>
</table>

Gross density 110 kg/m²

Conversion factor to 1 kg 0.0090091 -

The selected product represents the product with the highest production volume as the "typical product". The declared values can be extrapolated to any product and thickness via the respective area weight.
The system boundary of module A1-A3 encompasses all processes related to the production of cellular glass. The system boundary for the recycled glass is assumed to be after the sorting of the glass cullets that are to be recycled. Within the system boundary of A1-A3 are considered:

- grinding of recycled glass cullets
- production of all ancillary materials
- electricity production
- heat generation for the production process
- production of packaging material
- all transport, including transport of glass cullets to the external grinding and transport of inputs to the production site.

The process does not generate waste water.

The process generates about 30% of production waste that is used for the production of cellular glass gravel. This co-product is considered to leave the product system without any environmental burdens.

No other waste is generated in significant quantities.

Module A4 contains the average transport scenario from the production site to the construction site.

Module A5 contains the disposal of the PE packaging in a municipal waste incineration plant, from which energy is exported from the product system; the benefits of this exported energy are reported in Module D.

In the end-of-life, 2 scenarios are declared:

Scenario 1: recycling into cellular glass gravel
Module C2/1 contains a default transport scenario (350 km by lorry) of the cellular glass from the deconstruction site to the GLAPOR production site (see also module A4).

Module C3/1 contains the electricity consumption used to crush the deconstructed cellular foam board into gravel smaller than 60 mm.

Module D/1 contains the benefits of replacing natural crushed gravel and of the exported energy from the energy recovery from the treatment of PE in a municipal waste incineration plant.

Scenario 2: landfilling
Module C2/2 contains a default transport scenario (50 km by lorry) of the cellular glass from the deconstruction site to the inert material landfill.

Module C4/2 contains the landfilling of the cellular glass.

Module D/2 contains the benefits of the exported energy from the energy recovery from the treatment of PE in a municipal waste incineration plant.

Comparability
Basically, a comparison or an evaluation of EPD data is only possible if all the data sets to be compared were created according to [EN 15804](#) and the building context, respectively the product-specific characteristics of performance, are taken into account.

The database ecoinvent 3.3 (Alloc. rec.) was used as background database.

LCA: Scenarios and additional technical information

Transport to construction site (A4)
A default distance of 350 km is assumed for the transport from the production to the construction site. Capacity utilisation and fuel consumption are taken from the ecoinvent dataset for an average transport by lorry in Europe and have not been modified.

Construction (A5)
0.66 kg of PE packaging foil has been inventoried that is used for energy recovery in a municipal waste incineration plant. According to the ecoinvent DS used, 5 MJ/kg of electricity and 10.2 MJ/kg of heat are recovered from 1 kg of PE waste.

The use of multi-way pallets has not been taken into account as packaging material.

Service life

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Life Span (according to BBSR)</td>
<td>≥ 50</td>
<td>a</td>
</tr>
</tbody>
</table>

C1-C4 End-of-life scenario

In the end-of-life, 2 scenarios are declared:

Scenario 1: recycling into cellular glass gravel
Module C2/1 contains a default transport scenario (350 km by lorry) of the cellular glass from the deconstruction site to the GLAPOR production site (see also module A4).

Module C3/1 contains the electricity consumption used to crush the deconstructed cellular foam board into gravel smaller than 60 mm.

Scenario 2: landfilling
Module C2/2 contains a default transport scenario (50 km by lorry) of the cellular glass from the deconstruction site to the inert material landfill.

Module C4/2 contains the landfilling of the cellular glass in an inert material landfill.

D Benefits and burdens beyond system boundary
Module D/1 contains the benefits of replacing natural crushed gravel and of the exported energy from the energy recovery from the treatment of PE packaging in a municipal waste incineration plant.
Module D/2 contains solely the benefits of the exported energy from the energy recovery from the treatment of PE packaging in a municipal waste incineration plant.
RESULTS OF THE LC - ENVIRONMENTAL IMPACT: GLAPOR cellular glass / per m³ (110 kg/m³)

RESULTS OF THE LCA - RESOURCE USE: GLAPOR cellular glass / per m³ (110 kg/m³)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>A1-A3</th>
<th>A4</th>
<th>A5</th>
<th>C2/1</th>
<th>C2/2</th>
<th>C3/1</th>
<th>C3/2</th>
<th>D1</th>
<th>D2</th>
</tr>
</thead>
<tbody>
<tr>
<td>GWP</td>
<td>[kg CO₂-Eq.]</td>
<td>7.97E+1</td>
<td>4.26E+0</td>
<td>1.99E+0</td>
<td>4.28E+0</td>
<td>6.13E-1</td>
<td>6.62E-1</td>
<td>0.00E+0</td>
<td>-1.34E+0</td>
<td>-1.11E+0</td>
</tr>
<tr>
<td>ODP</td>
<td>[kg CFC-11-Eq.]</td>
<td>8.86E-6</td>
<td>8.21E-7</td>
<td>8.75E-10</td>
<td>8.21E-7</td>
<td>1.17E-7</td>
<td>3.38E-8</td>
<td>0.00E+0</td>
<td>-1.35E-7</td>
<td>-1.06E-7</td>
</tr>
<tr>
<td>AP</td>
<td>[kg SO₂-Eq.]</td>
<td>1.91E-1</td>
<td>1.26E-2</td>
<td>2.68E-5</td>
<td>1.28E-2</td>
<td>1.80E-3</td>
<td>9.44E-4</td>
<td>0.00E+0</td>
<td>-2.94E-3</td>
<td>-1.42E-3</td>
</tr>
<tr>
<td>EP</td>
<td>[kg PO₄³⁻-Eq.]</td>
<td>6.26E-2</td>
<td>2.07E-3</td>
<td>7.79E-6</td>
<td>2.07E-3</td>
<td>2.96E-4</td>
<td>3.42E-4</td>
<td>0.00E+0</td>
<td>-6.28E-4</td>
<td>-5.54E-4</td>
</tr>
<tr>
<td>CO₂</td>
<td>[kg C-EO₃⁻-Eq.]</td>
<td>9.02E-3</td>
<td>6.79E-4</td>
<td>9.26E-4</td>
<td>5.92E-4</td>
<td>8.58E-5</td>
<td>5.62E-5</td>
<td>0.00E+0</td>
<td>-2.86E-4</td>
<td>-9.45E-4</td>
</tr>
<tr>
<td>ADPE</td>
<td>[kg ethene-Eq.]</td>
<td>6.83E-6</td>
<td>1.03E-7</td>
<td>3.06E-10</td>
<td>1.03E-7</td>
<td>1.47E-8</td>
<td>1.50E-8</td>
<td>0.00E+0</td>
<td>-1.96E-7</td>
<td>-1.47E-8</td>
</tr>
<tr>
<td>ADPF</td>
<td>[MJ]</td>
<td>1.24E+3</td>
<td>6.54E+1</td>
<td>3.30E-2</td>
<td>6.54E+1</td>
<td>9.39E+1</td>
<td>1.06E+1</td>
<td>0.00E+0</td>
<td>-2.12E+1</td>
<td>-1.80E+1</td>
</tr>
</tbody>
</table>

RESULTS OF THE LCA - OUTPUT FLOWS AND WASTE CATEGORIES: GLAPOR cellular glass / per m³ (110 kg/m³)

<table>
<thead>
<tr>
<th>Flow/Flow</th>
<th>Unit</th>
<th>A1-A3</th>
<th>A4</th>
<th>A5</th>
<th>C2/1</th>
<th>C2/2</th>
<th>C3/1</th>
<th>C3/2</th>
<th>D1</th>
<th>D2</th>
</tr>
</thead>
<tbody>
<tr>
<td>HWD</td>
<td>[kg]</td>
<td>1.44E-3</td>
<td>1.44E-5</td>
<td>4.09E-7</td>
<td>1.44E-5</td>
<td>2.05E-6</td>
<td>2.70E-5</td>
<td>0.00E+0</td>
<td>-3.33E-5</td>
<td>-3.17E-5</td>
</tr>
<tr>
<td>NHWD</td>
<td>[kg]</td>
<td>9.61E-6</td>
<td>2.17E-5</td>
<td>3.06E-9</td>
<td>2.17E-5</td>
<td>3.16E-6</td>
<td>1.74E-7</td>
<td>0.00E+0</td>
<td>-5.63E-7</td>
<td>-1.76E-7</td>
</tr>
<tr>
<td>RWD</td>
<td>[kg]</td>
<td>6.28E-3</td>
<td>1.06E-3</td>
<td>2.05E-7</td>
<td>1.06E-3</td>
<td>1.43E-4</td>
<td>6.87E-5</td>
<td>0.00E+0</td>
<td>-1.24E-4</td>
<td>-5.87E-5</td>
</tr>
<tr>
<td>CRU</td>
<td>[kg]</td>
<td>0.00E+0</td>
<td>0.00E+0</td>
<td>0.00E+0</td>
<td>0.00E+0</td>
<td>0.00E+0</td>
<td>0.00E+0</td>
<td>0.00E+0</td>
<td>0.00E+0</td>
<td>0.00E+0</td>
</tr>
<tr>
<td>MFR</td>
<td>[kg]</td>
<td>6.28E-3</td>
<td>0.00E+0</td>
<td>0.00E+0</td>
<td>0.00E+0</td>
<td>0.00E+0</td>
<td>1.10E+2</td>
<td>0.00E+0</td>
<td>0.00E+0</td>
<td>0.00E+0</td>
</tr>
<tr>
<td>MER</td>
<td>[kg]</td>
<td>0.00E+0</td>
<td>0.00E+0</td>
<td>0.00E+0</td>
<td>0.00E+0</td>
<td>0.00E+0</td>
<td>0.00E+0</td>
<td>0.00E+0</td>
<td>0.00E+0</td>
<td>0.00E+0</td>
</tr>
<tr>
<td>EEE</td>
<td>[kg]</td>
<td>0.00E+0</td>
<td>0.00E+0</td>
<td>0.00E+0</td>
<td>0.00E+0</td>
<td>0.00E+0</td>
<td>0.00E+0</td>
<td>0.00E+0</td>
<td>0.00E+0</td>
<td>0.00E+0</td>
</tr>
<tr>
<td>EET</td>
<td>[kg]</td>
<td>0.00E+0</td>
<td>0.00E+0</td>
<td>0.00E+0</td>
<td>0.00E+0</td>
<td>0.00E+0</td>
<td>0.00E+0</td>
<td>0.00E+0</td>
<td>0.00E+0</td>
<td>0.00E+0</td>
</tr>
</tbody>
</table>

References

Institut Bauen und Umwelt
Institut Bauen und Umwelt e.V., Berlin (pub.);
Generation of Environmental Product Declarations (EPDs);
General Principles

for the EPD range of Institut Bauen und Umwelt e.V. (IBU), 2013/04
www.ibu-epd.de

/ISO 14025/
DIN EN /ISO 14025:2011-10/, Environmental labels and declarations — Type III environmental declarations — Principles and procedures

/EN 15804/
/EN 15804:2012-04+A1 2013/, Sustainability of construction works — Environmental Product Declarations — Core rules for the product category of construction products

/DIN 4108-10:2015/
DIN 4108-10:2015-12, Thermal insulation and energy economy in buildings - Part 10: Application-related requirements for thermal insulation materials - Factory made products

/EN 1602/
DIN EN 1602:2013-05, Wärmedämmstoffe für das Bauwesen - Bestimmung der Rohdichte; Deutsche Fassung EN 1602:2013

/EN 826/
DIN EN 826:2013-05, Wärmedämmstoffe für das Bauwesen - Bestimmung des Verhaltens bei Druckbeanspruchung; Deutsche Fassung EN 826:2013

/EN 13501-1/

/IBU 2017a/

/IBU 2017b/

/BBSR 2011/

/Fraunhofer 2017/

/ecoinvent 3.3/
http://www.ecoinvent.org/